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Rank Preserving Sparse Learning for Kinect
Based Scene Classification
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Abstract—With the rapid development of the RGB-D sensors
and the promptly growing population of the low-cost Microsoft
Kinect sensor, scene classification, which is a hard, yet important,
problem in computer vision, has gained a resurgence of interest
recently. That is because the depth of information provided by
the Kinect sensor opens an effective and innovative way for
scene classification. In this paper, we propose a new scheme
for scene classification, which applies locality-constrained linear
coding (LLC) to local SIFT features for representing the RGB-D
samples and classifies scenes through the cooperation between
a new rank preserving sparse learning (RPSL) based dimension
reduction and a simple classification method. RPSL considers
four aspects: 1) it preserves the rank order information of the
within-class samples in a local patch; 2) it maximizes the margin
between the between-class samples on the local patch; 3) the L1-
norm penalty is introduced to obtain the parsimony property;
and 4) it models the classification error minimization by utilizing
the least-squares error minimization. Experiments are conducted
on the NYU Depth V1 dataset and demonstrate the robustness
and effectiveness of RPSL for scene classification.

Index Terms—Dimension reduction, Kinect sensor, rank pre-
serving and sparse learning, RGB-D sensor, scene classification.

I. Introduction

SCENE classification receives intensive attention as it ben-
efits many practical applications, such as content-based

image retrieval [8], [39], and [47], robotics path planning
[55], [59], and image annotation [32], [44]. Tamura et al. [52]
explained scene classification as a procedure that the basic
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local measurements, e.g., edge detection and region analysis,
are successively integrated into representative patterns.

In general, scene classification can be considered a
viewpoint-independent object recognition problem [20], [36],
and [46] but a scene is constituted by a number of entities. For
example, consider an indoor scene, which may contain chairs,
desks, people, and bookshelves in an unpredictable fashion.
Typically, it is accomplished by the following important steps.
First, the visual features are computed from a collection of
training images. Second, an efficient model of dimension
reduction is trained based on training images to retain the
most effective features for the subsequent scene classification.
Third, a suitable classifier is selected for final classification.

Despite all recent efforts in computer vision and robotics,
the scene classification problem remains largely unsolved.
Scene classification is difficult because of sophisticated en-
vironments and the variations of the illumination conditions
in real-world situations. Thus, many approaches have been
developed to extract robust features to represent scene images.

Low-level visual features, such as color, texture, and shape,
have gained prominence and shown many merits in scene clas-
sification. The HSV color histogram [49], color moment [31],
and color coherence vector [38] are invariant to resolution and
perspective changes and, thus, perform better than traditional
texture and shape features. However, the color descriptors are
sensitive to light conditions [41]. Although texture analysis
is valuable for many tasks in computer vision [29], [34],
empirical studies [35], [48], and [59] indicate detailed micro
textural information is not helpful for scene classification.
Shape features [35], [42], [58], and [59] have been validated
to be effective for scene classification.

In contrast to low-level global visual features, local features
encode features on interest points or regions [43]. Scale in-
variant feature transform (SIFT) [25] is popular for extracting
local features. By utilizing integral images, speeded up robust
features (SURF) [2] reduce the computations of local gradient
histograms. Local binary patterns (LBP) [12] are proposed for
texture classification originally. It estimates the local geometric
structure of an image based on a non-parametric method and
has been widely used in facial image description [19].

The success of Microsoft Kinect [16], [30] opens an innova-
tive channel to add the effective depth information to the visual
recognition in the 2-D space. Note that in contrast to con-
ventional time-of-flight (ToF) and light detection and ranging
(LIDAR) techniques, Microsoft Kinect, which equips
consumer high-resolution depth and visual sensors, can
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easily provide high quality synchronized videos of both
color and depth. Microsoft Kinect enjoys widespread public
acceptance that 10 million units have been sold by January
2012. Thus, Kinect sensor (RGB-D Sensor) has attracted a
lot of attention in computer vision. More and more labeled
datasets are publicly available. Janoch et al. [21] released
Berkeley 3-D Object Dataset (B3DO), which contains RGB
and depth image pairs gathered in real domestic and office
environments. Lai et al. [22] built a large-scale, hierarchical
multiview objects dataset of everyday objects collected using
an RGB-D (Kinect style) camera. Silberman and Fergus [46]
established a challenging indoor scene dataset NYU Depth.
Each image of NYU Depth dataset has a preprocessing depth
map with the corresponding manual labels. Remarkably, a
number of effective methods have been proposed to utilize
the information of depth to improve the performance of
object recognition. Bo et al. [5] proposed a set of kernel
descriptors to extract features from depth images. Janoch
et al. [21] extracted the traditional histogram of oriented
gradients (HOG) from the depth image. But experiments show
that Depth Hog was suboptimal. Silberman and Fergus [46]
utilized the spatial pyramid matching (SPM) [23] to represent
the samples by using the local SIFT features extracted from
both the RGB image and the corresponding depth image.
The approach improves the scene classification performance
effectively. SPM has been successfully utilized in the recent
state-of-the-art image classification systems [5], [27], [59].

It is well known that the classical SPM scheme provides an
effective solution while the classifier is constructed by Mercer
kernels. This approach is computational expensive. Inspired by
SPM, Yang et al. [60] proposed the spatial pyramid matching
using sparse coding (ScSPM) feature representation scheme, in
which sparse coding technique was used for nonlinear feature
representation. ScSPM achieved top level performance for
image classification. However, the computation of ScSPM is
expensive. Thus, locality-constrained linear coding (LLC) [57]
is more suitable, because LLC can use a linear SVM classifier
to obtain good performance of object classification. LLC is
based on local coordinate coding (LCC) [63] and explores
the locally linear characteristic of the sample distribution.
The effectiveness of LLC is ensured by the several attractive
properties, i.e., better reconstruction, local smooth sparsity,
and analytical solution.

Besides robust visual features for image representation,
dimension reduction is essential because the dimension of the
image represented by LLC is high. This high dimensionality
limits applications of LLC in Kinect based scene classification
due to limited computational resources. Dimension reduction
results in a succinct yet effective representation of a high-
dimensional sample. Over the past decades, although classical
linear dimension reduction algorithms [14], [18], [50], and
popular manifold learning algorithms [53] have been largely
proposed to reduce the data dimensionality for classification
tasks, there is big room to improve the efficiency and stability.
First, the Euclidean metric has been generally considered to
suffer from the concentration of measure phenomenon [4],
[11]. Extensive experiments [16], [19], [29] confirmed the
importance of the ranking of neighbors for characterizing the

data distribution property. Thus, the preservation of the rank
order in supervised manifold learning benefits to recover the
intrinsic geometry of the data distribution. Second, there are
considerable interests and successes on sparse learning algo-
rithms to obtain the parsimony property. Third, it is necessary
to minimize the classification error in dimension reduction.
The design will improve the accuracy of the subsequent
classification [61]. In this paper, we introduce the rank order
information to improve sparse learning for Kinect based scene
classification and present a new dimension reduction algorithm
termed rank preserving sparse learning.

Based on the above descriptions, we conduct the Kinect
based scene classification through the following stages: 1)
using Kinect to record scene images; 2) applying locality-
constrained linear coding (LLC) to local SIFT features to
represent the RGB-D images; 3) training rank preserving
sparse learning projection matrix by using labeled samples;
and 4) classifying the RPSL projected samples. The main
contribution of this paper is the newly developed RPSL for
Kinect based scene classification. Given the limited page
length, the other parts will not be detailed, because they are
easy to implement based on the references cited therein.

The rest of the paper is organized as follows. In Section II,
we review related works on dimension reduction, which are
important for scene classification and the experiment section.
We detail the newly proposed rank preserving sparse learning
in Section III. Section IV shows the experimental results on
the NYU Depth V1 dataset [46]. Section V concludes this
paper.

II. Related Work

In the previous section, we have quickly surveyed visual
feature extraction and representation for scene images. Since
the number of the original visual features is high and all visual
features are not equally informative, dimension reduction
can effectively reduce this problem. Over the past decades,
many dimension reduction approaches have been proposed
and applied to the feature selection in the transformed space.
We simply grouped these algorithms into two categories and
review them as follows.

A. Classical Dimension Reduction Algorithms

The most widely used dimension reduction methods in the
visual object classification problems are principal component
analysis (PCA) [18] and linear discriminant analysis (LDA)
[14], [51]. PCA seeks the principal subspace and projects the
data points onto the subspace, in which the variance of the
projected points is maximized. Siagian et al. [45] used PCA
to reduce the dimensionalities of raw gist features. It helps
obtain a more practical number of dimensionality while at the
same time preserving the variance in the dataset. LDA, which
is supervised, aims to best separate the classes of objects when
classes are sampled from Gaussians with equal covariance. Ye
[61] studied the multiclass classification performance of LDA
by utilizing the least squares error. This approach is developed
for the homoscedastic Gaussian.
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Manifold learning algorithms are developed to tackle high
dimensional data. The most representative ones include locally
linear embedding (LLE) [40], ISOMap [54] and Laplacian
eigenmaps (LE) [3], as well as their linear approximations,
such as locality preserving projections [17]. LLE is unsuper-
vised and seeks a low-dimensional, neighborhood-preserving
embeddings of the high-dimensional data. ISOMap is a variant
of the multidimensional scaling by considering the geodesic
distance between samples. It discovers the nonlinearlity of
the high dimensional data. LE is a computationally efficient
approach for reducing the data dimensionality. It preserves
the local geometry of the data and constructs a compact rep-
resentation of the data lying on the low dimensional manifold.
Zhang et al. [64] proposed a framework to unify representative
dimension reduction algorithms. Yu et al. [62] compared the
performance of some manifold learning-based dimensionality
reduction methods in the application of scene classification.

B. Sparse Learning Based Dimension Reduction

Sparse learning refers to a collection of variable selection
algorithms [66], [67] and trades model fitting off the model
complexity by adding a sparse penalty to the model. Since
sparse learning obtains better interpretability and reduces
the computational cost for the subsequent processing, it has
become a powerful tool to obtain succinct models of high-
dimensional data. Practically, the sparse learning algorithms
are useful for understanding large collections of images by
finding effective features. Naikal et al. [33] utilized sparse
PCA (SPCA) [67] to select informative visual features. This
approach can effectively eliminate the useless or even harmful
terms in the feature representation. But it ignores the class
labels that are important for classification. Clemmensen et al.
[9] proposed sparse discriminant analysis by using a lasso
penalty. Recently, Cai et al. [6] presented a framework to
unify several manifold learning based dimension reduction
algorithms and obtained their corresponding sparse solutions.
Although sparse learning has many merits, it is difficult to
find the optimal solution. Note that the least angle regression
(LARS) [12] is an efficient and effective tool and can be used
to seek a closed-form solution for the situation of the lasso
penalty. Furthermore, the accuracy of the solution is high.

III. Rank Preserving Sparse Learning

In this section, we present a new supervised dimension
reduction algorithm for scene classification, rank preserving
sparse learning (RPSL).

In scene classification, we present the visual information of
a scene image by using a group of robust features, i.e., X =
[x1, x2, · · · , xN ] ∈ RD×N with a D-dimensional visual feature
vector xi ∈ RD, and each sample has the corresponding class
label Ci ∈ Zn. The objective of dimension reduction is to find
a projection matrix U ∈ RD×d to linearly map samples from
the high-dimensional space RD to a low-dimensional subspace
Rd , with d < D, i.e., Y = UT X = [y1, y2, · · · yN ] ∈ Rd×N . By
using Y , an improved classification result can be obtained.

Supervised manifold learning algorithms consider the
data intrinsic structure and are dedicated to obtain a

low-dimensional sub-manifold to encode the distribution of
samples. However, the performance of popular manifold learn-
ing algorithms has drastically decreased due to the con-
centration of the measure phenomenon [4], [11]. Preserving
the rank order information can be regarded as an effective
and efficient solution in the process of dimension reduction
[10], [24]

Sparse learning algorithms aim to find samples sparse
representations via variable selection [66], [67]. Thus, by
sparse learning, we can obtain an interpreted model and save
the cost of computation. Furthermore, decreasing irrelevant
features can contribute to the stability of classification. In
addition, in order to improve the accuracy of classification,
the minimization of classification error is important.

Thus, there are several critical factors to consider for the
design of rank preserving sparse learning.

1) In a local patch, it preserves as much as possible the
rank order information of the within-class samples and
ignores the rank order information of the between-class
samples simultaneously, considering the variations in
the original distribution resulted by dimension reduction
[24];

2) it maximizes the margin between the samples from
different classes on a local patch;

3) the L1-norm penalty is introduced to achieve sparse
representation; and

4) it models the classification error minimization by utiliz-
ing the least squares error minimization.

A. Rank Preserving and Discriminant Analysis

Patch alignment framework (PAF) [64] unifies popular
dimension reduction algorithms, such as PCA [18], LDA [14],
ISOMap [54], LLE [42], and LE [3], and provides useful
understanding to these algorithms. In this paper, the process
of the rank order information preserving is developed under
the PAF. The development can be reasonably divided into part
optimization and whole alignment two stages.

Given a labeled sample xi, a local patch Xi =
[xi, xi1 , ...xik1 , xi1 , ..., xik2

] ∈ RD×(k1+k2+1)can be formed by
its k1 closest within-class samples xi1 , ..., xik1 and k2 clos-
est between-class samples xi1 , ..., xik2

. Considering a linear
projection mapping fi : Xi �→ Yi, the corresponding
low-dimension representation of the local patch is Yi =
[yi, yi1 , ...yik1 , yi1 , ..., yik2

] ∈ Rd×(k1+k2+1). The index set is
defined as: Fi =

{
i, i1, · · · , ik1 , i1, · · · ik2

}
.

In order to preserve the within-class rank order information
as much as possible, we use the rank matrix R [24], in which
each entry Rij is the rank of the sample j with respect to
the sample i. Note that the matrix R is not symmetric and
cannot be used in PAF straightforwardly. Inspired by the
nonlinear unsupervised learning algorithm DD-HDS [24] and
the effective rank order information preservation by a sigmoid-
like weighting function, we introduce a penalized factor as

(wi)j =

{
1 − ∫ ‖xi−x

ij‖
−∞ f (u |μ, σ ) du,

0
if xij ∈ Nk1 (xi)

otherwise
(1)
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where f (u |μ, σ ) is a Gaussian variable probability density
function parameterized in terms of a mean μ and a standard
deviation σ, and Nk1 is the set of k1 nearest within-class
samples of xi. In addition, Lespinats et al. [24] proposed an
estimation method of the mean μ and the standard deviation
σ, that is

μ = mean
1≤i<j≤N

(
dij

)− 2 (1 − λ) std
1≤i<j≤N

(
dij

)
(2)

σ = 2λ std
1≤i<j≤N

(
dij

)
(3)

where the mean and the std are operators to characterize
the distribution of distances between all pairwise samples in
the high-dimensional space (dij). The parameter λ affects the
performance of dimension reduction and is selected in the
range of [0, 1]. In a local patch, the penalized factor plays
an essential role in the rank order information preservation. It
emphasizes the distinction between large and small distances
in the high-dimensional space by using small and large weight-
ings, respectively. Thus, it well solves the problem arose by
the concentration of the measure phenomenon. The strategy
of within-class samples rank preserving can be written as

R (yi) =
k1∑
j=1

‖yi − yij‖2 (wi)j . (4)

For supervised learning, we expect to maximize the margin.
The margin can be defined as the sum of the distances between
yi and the k2 between-class samples

M (yi) =
k2∑

p=1

∥∥yi − yip

∥∥2
. (5)

Therefore the part optimization can be obtained by combining
(8) and (9) via a trade-off parameter γ

arg min
yi

⎛
⎝ k1∑

j=1

‖yi − yij‖2 (wi)j − γ

k2∑
p=1

∥∥yi − yip

∥∥2

⎞
⎠ (6)

where γ ∈ [0, +∞] is a trade-off parameter to integrate the
contributions of the two parts. Equation (6) reduces to

arg min
yi

k1∑
j=1

∥∥yi − yij

∥∥2
(wi)j − γ

k2∑
p=1

∥∥yi − yij

∥∥2
,

= arg min
yi

k1+k2∑
j=1

∥∥yFi{1} − yFi{j+1}
∥∥2

(vi)j

= arg min
Yi

tr

{
Yi

[ −eT
k1+k2

Ik1+k2

]
diag (vi)

[ −ek1+k2 Ik1+k2

]
YT

i

}
= arg min

Yi

tr
(
YiLiY

T
i

)
(7)

where tr (·) is the trace operator

ek1+k2 = [1, · · · , 1]T ∈ Rk1+k2 , Ik1+k2 = diag

⎛
⎝ k1+k2︷ ︸︸ ︷

1, · · · , 1

⎞
⎠ ,

vi =

⎡
⎣ k1︷ ︸︸ ︷

(wi)1 , · · · , (wi)k1
, · · · ,

k2︷ ︸︸ ︷
−γk1+1, , −γk2

⎤
⎦

and Li =

[ −eT
k1+k2

Ik1+k2

]
diag (wi)

[ −ek1+k2 Ik1+k2

]
.

Under PAF, we can align all local patches together into a
consistent coordinate by utilizing the selection matrix Si ∈
RN×(k1+k2+1). The selection matrix is defined as

(Si)pq =

{
1, If p = Fi {q}

0else.
. (8)

The coordinate of the low dimensional representation Y i is
then given by Y = UT X = [y1, y2, · · · yN ] ∈ Rd×N , i.e.

Yi = YSi. (9)

According to (9), the part optimization (12) can be rewritten
as

arg min
Y

tr
(
YSiLiS

T
i YT

)
. (10)

We sum over all the part optimizations defined in (10) over
all samples to obtain the whole alignment objective function
and then have

arg min
Y

N∑
i=1

tr
(
YSiLiS

T
i YT

)
= arg min

Y

tr
(
YLYT

) (11)

where L =
N∑
i=1

SiLiS
T
i ∈ RN×N is the alignment matrix. For

linearization, we substitute Y = UT X into (11) and get

arg min
U

tr
(
UT XLXT U

)
. (12)

B. Sparsity Penalty Term

The sparsity of the projection matrix controls the number
of nonzero entries. Although the L0-norm of the projection
matrix can be directly used to model the sparsity, it results
an NP-hard problem that is computationally intractable. In
general, the L1-norm of the projection matrix is an alternative
way for approximating the L0-norm. Therefore, the objective
function can be written as

arg min
U

tr
(
UT XLXT U

)
+ λ ‖U‖1 . (13)

C. Classification Error Minimization Penalty Term

In order to improve the performance of the subsequent clas-
sification, we expect that within-class samples can be mapped
to the same point by using the dimension reduction algorithm.
Similar to manifold elastic net [65], we utilize weighted PCA
to estimate the class centers in the low-dimensional space. The
specific procedure is described as follows.

Suppose there are N samples drawn from c classes, and
there are ni samples in the ith class. We can obtain the ith
class center

oi =

(
1

ni

) ni∑
j=1

xj. (14)
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Fig. 1. Framework of rank preserving sparse learning. This scheme contains the following four components: 1) using Kinect to record RGB-D scene images;
2) using locality-constrained linear coding (LLC) to represent the samples by using local SIFT features from which extracted both the RGB image and the cor-
responding depth image; 3) training rank preserving sparse learning projection matrix by using labeled samples; and 4) classifying the RPSL projected samples.

The corresponding weighted covariance matrix of class
centers can be written as

C =
C∑
i=1

(ni

N

)
oio

T
i . (15)

We conduct standard eigenvalue decomposition and achieve
the d eigenvectors associated with the largest d eigenvalues
ζ = [ζ1, ζ2, · · · , ζd]. Thus, the class center in the d-
dimensional subspace can be calculated by

o′
i = ζT oi. (16)

The objective incorporated with the classification error
minimization can be written as

arg min
Y,U

∥∥Z − Utx
∥∥2

2 + ηtr
(
UT XLXT U

)
+ λ ‖U‖1 (17)

where Z = [z1, z2, · · · zn], and zj = o′
i.

D. Solution for Rank Preserving Sparse Learning

Up to now, the RPSL objective function (15) for dimension
reduction has been obtained. It is known that the least angle
regression (LARS) can be used to solve the lasso penalized
problem effectively, we transform (17) to the style of a
quadratic form with the L1-norm penalty

arg min
U

∥∥Z − UT X
∥∥2

2 + ηtr
(
UT XLXT U

)
+ λ ‖U‖1

= arg min
U

tr
((

Z − UT X
) (

Z − UT X
)T
)

+ ηtr
(
UT XLXT U

)
+ λ ‖U‖1

= arg min
U

tr
(
UT X (ηL + I) XT U

−ZXT U − UT XZT
)

+ λ ‖U‖1

= arg min
U

trA + λ ‖U‖1 (18)

A = UT X (ηL + I) XT U − ZXT U − UT XZT . (19)

Since the alignment matrix L is symmetric, we conduct
standard eigenvalue decomposition on ηL + I, and get

ηL + I = Bdiag (�i) BT ,

= B�BT (20)

where B is the eigenvector matrix, �iis the ith eigenvalue, and
� = diag(�i) is the diagonal eigenvalue matrix.

Substituting (20) back into (19), we get

UtX (ηL + I) XT U − ZXT U − UT XZT

= UT X
(
B�1/2

) (
�1/2BT

)
XT U − Z

(
B�1/2

) (
B�1/2

)−1
XT U

− UT X
(
B�1/2

) (
Bλ1/2

)−1
ZT . (21)

This implies (18) can be transformed to (22)

arg min
U

trA + λ ‖U‖1

= arg min
U

∥∥∥(B�1/2
)−1

ZT − (
�1/2BT

)
XT U

∥∥∥2

− tr
(
Z
(
B�BT

)−1
ZT

)
+ λ ‖U‖1 . (22)

Since tr
(
Z
(
B�BT

)−1
ZT

)
is a constant item, we can ig-

nore it and get a new objective function (23)

arg min
U

∥∥∥(B�1/2
)−1

ZT − (
�1/2BT

)
XT U

∥∥∥2
+ λ ‖U‖1

= arg min
U

∥∥Ẑ − X̂U
∥∥2

+ λ ‖U‖1 (23)

where

Ẑ = [
(
B�1/2

)−1
ZT ] = [z1, z2, · · · , zd] ∈ Rn×d, X̂

=
(
�1/2BT

)
XT ∈ Rn×D, and U = [u1, u2, ...ud] ∈ RD×d.
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Fig. 2. Example images in the NYU Depth V1 dataset, which contains seven object classes (bathroom, bedroom, bookstore, cafe, kitchen, living room, and
office). There are 14 paired samples shown in this figure. For each pair, the RGB color image is shown on the right and the corresponding depth image is on
the left (blue = close, red = far).

We can rewrite (23) to

arg min
U

∥∥Ẑ − X̂U
∥∥2

+ λ ‖U‖1

=
d∑

i=1

(
arg min

ui

(∥∥ẑi − X̂ui

∥∥2
+ λ ‖ui‖1

))
. (24)

Given (24), it is straightforward to use LARS to obtain the
optimal solution of ui.

IV. Experimental results

In this section, we conduct the experiments of scene clas-
sification on the NYU Depth V1 dataset [46] to demonstrate
the effectiveness of the proposed RPSL. The dataset contains
2,284 samples belonging to seven scene categories. For each
image, the SIFT features are extracted from salient regions
and locality-constrained linear coding (LLC) are used for
feature representation. We compare LLC with ScSPM for
feature representation on the NYU Depth V1 dataset, to
demonstrate LLC is more suitable than ScSPM for Kinect
based scene classification. We measure the performance of
our method by using the average accuracy for each scene
category. In addition, the confusion matrix, in which each

column represents the most likely inferred label information
while each row represents the ground truth label information,
is used for better understanding of where the approach fails.
In addition, we conduct the experiments on the popular fifteen
scene categories dataset [1] to further verify the proposed
algorithm. The dataset contains 4,485 samples belonging to
15 scene categories. Details of the experimental setup and
baseline models are given below.

A. Dataset

The NYU Depth V1 dataset is collected by New York
University. It is different from most works applying the depth
signal of a scene, and it is worthwhile to highlight the
following few points.

1) The scene images have been captured by the Microsoft
Kinect and the accurate depth maps can be achieved by
utilizing a certain correction technique.

2) There are 64 different indoor environments spread over
and all images in the dataset can be grouped into seven
categories, including bathroom, bedroom, bookstore,
cafe, kitchen, living room, and office.

3) The cross-bilateral filter [37] is a good solution to
remove the depth shadow regions.
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Fig. 3. Locality-constrained linear coding for RGBD-LLC feature.

TABLE I

Statistics of Samples

Scene Classes Scene Sample size
Bathroom 6 70
Bedroom 17 463
Bookstore 3 781
Cafe 1 47
Kitchen 10 276
Living Room 13 342
Office 14 305

4) By using 3-D accelerometer in Kinect, the effects of
pitch and roll are eliminated in the process of samples
collection. In our experiments, we use the scene name
information given by the annotation file during the
training stage. Example images are given in Fig. 2. There
are 14 paired samples that color image is on the right and
contrasting depth image is on the left (blue means close
and red indicates far). Table I shows the distribution of
samples. Note that the data acquisition subjects to the
limitation of the Kinect.

The 15 scene categories dataset is expanded upon in [2]
and [26]. The dataset consists of 4485 samples collected
from 15 scenes. The number of samples of each scene varies
from 215 to 410. The samples in the dataset come from a
broader range of sources, including personal photographs, the
COREL collection, and Google search. Thus, it is suitable for
evaluating the scene classification schemes.

In particular, we randomly select p = 30 samples per scene
category for training, while the remaining samples are used as
the test data. The training set was used to learn the orthogonal
projection matrix. The test set was used for performance
evaluation. We conduct all experiments ten times, and the av-
erage recognition rates were calculated for comparing different
methods.

B. Feature Descriptor

RGB images and depth images are processed as follows to
obtain the feature descriptors. First, all images are transformed
into gray scale and resized to be no larger than 300 × 300
pixels with fixed ratio. Second, the SIFT features of 16 × 16
pixel patches are extracted over a grid with spacing 8 pixels
both in RGB and depth images. The dimension of the SIFT de-
scriptor is 128. Third, we adopt LLC and ScSPM, respectively,
in the step of computing feature representation. Parameters
are chosen through the empirical evaluations. We perform k-
means clustering on all patches from the whole dataset to
form a codebook (dictionary). Note that the k-means algorithm
selects the initial cluster centers randomly and the termination
criterion for iteration is judged by the center and varies in
a small range. The vocabulary size of the codebook in our
experiment is M = 1024. Max pooling is conducted on a 3-level
spatial pyramid, partitioned into 1 × 1, 2 × 2, and 4 × 4 sub-
regions. For an RGB and depth image pair, lengths of LLC and
ScSPM representations are both (1 + 4 + 16) × 1024 = 21,504.
Finally, RGB and depth representation are concatenated as one
feature vector. Note that the samples of fifteen scene categories
dataset only have RGB representation by adopting LLC.

C. Baselines and Performance Evaluation

In this section, we conduct experiments to evaluate the
performance of RPSL by comparing it with five representative
algorithms, including PCA, SPCA, LDA, supervised LPP
(SLPP), and discriminative locality alignment (DLA). Each
algorithm has its own merits. PCA and SPCA are unsupervised
algorithms. LDA, SLPP, and DLA are supervised algorithms.
Before we conduct LDA, SLPP, DLA, and RPSL, the first
stage is the PCA projection. In the PCA stage, because the
number of the original features is much larger than the number
of training samples, N-C dimensions are retained to ensure that
within-scatter matrix Sw in LDA [28] is non-singular, where N
is the size of samples and C is the number of class. In order
to accelerate the learning process, we also conduct PCA step
to retain N-1 dimensions in SLPP, DLA and RPSL.

Because the nearest neighbor (NN) classifier does not need
to train a model, we use it in the classification stage. We repeat
all experiments ten times and the performance is measured by
the average accuracy for each class. In addition, to further
improve the recognition performance of the proposed dimen-
sion reduction algorithm, we use nonlinear support vector
machines (SVMs) [15], [56] to replace the NN rule for scene
classification. In our experiments, we use LIBSVM [7] to
conduct the SVM classification experiments.

To inspect that the depth information can be used to improve
the accuracy of the scene recognition, we conduct all exper-
iments on six different feature datasets by utilizing the LLC
and ScSPM to represent the SIFT feature extracted from the
RGB image, the depth image, and both images (the methods
are explained in Section IV-B), respectively. For convenience,
descriptors are defined as follows.

1) RGB-LLC: Feature set extracted from RGB images and
using the LLC representation.
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Fig. 4. We compare RPSL with PCA, SPCA, LDA, SLPP, and DLA on three different feature datasets, i.e., RGB-LLC, Depth-LLC and RGBD-LLC. NN
classifier is used for recognition. In each subfigure, the x-coordinate is the number of the dimension of all the algorithms on the test set and the y-coordinate
is the average recognition.

Fig. 5. Box plots of different methods for NYU Depth V1 dataset using LLC. NN classifier is used for recognition. There are three subfigures, each of which
corresponds to the performance obtained from a particular feature dataset. For all subfigures, we set the number of dimensionalities of all the algorithms on
the test set to 6.

TABLE II

Baseline of Scene Classification Results on the NYU DEPTH V1 (%)

Classifier Linear Support Vector Machines (SVM)
Feature set RGB-LLC RGBD-LLC Depth-LLC RGB-ScSPM RGBD-ScSPM Depth-ScSPM

mean std mean std mean std mean std mean std mean std
Average accuracy 78.1 1.7 79.9 1.5 68.5 1.5 77.5 1.4 79.0 1.6 68.0 2.4

2) Depth-LLC: Feature set extracted from depth images and
using the LLC representation.

3) RGBD-LLC: The concatenation of RGB-LLC and
Depth-LLC.

4) RGB-ScSPM: Feature set extracted from RGB images
and using the ScSPM representation.

5) Depth-ScSPM: Feature set extracted from depth images
and using the ScSPM representation.

6) RGBD-ScSPM: The concatenation of RGB-ScSPM and
Depth-ScSPM.

To better illustrate the classification performance of RPSL,
the confusion matrix between the ground truth class label and
the most likely inferred label is reported.

D. Experimental Results and Analysis

To better demonstrate the effectiveness of our scheme, we
consider Linear SVM [13] to classify the feature dataset
represented by LLC or ScSPM as a baseline. Table II reports

the average accuracy and the standard deviation of the baseline
on different feature datasets.

Figs. 4 and 6 compare the proposed RPSL with PCA, SPCA,
LDA, SLPP, and DLA on the NYU Depth V1 dataset. The
average recognition rate is computed on six different feature
datasets and varied with the number of the reduced dimen-
sionalities. The dimension of the RPSL and LDA subspace
is C-1, and the dimension of other algorithms subspace is
30. It can be observed that RPSL and DLA are comparable
to each other and outperform the others in terms of average
recognition rates. This is because RPSL and DLA not only
preserve the local geometry of within-class samples but also
introduce margin maximization to properly model the discrim-
ination of between-class samples. In particular, in Fig. 4, DLA
achieves its highest accuracy 81.87% at the dimensionality
11, while RPSL achieves its highest accuracy 80.82% at the
dimensionality 6. In Fig. 6, DLA achieves its highest accuracy
81.55% at the dimensionality 9, while RPSL achieves its high-
est accuracy 80.28% at the dimensionality 6. Note that in con-
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Fig. 6. We compare RPSL with PCA, SPCA, LDA, SLPP and DLA on three different feature datasets, i.e., RGB-ScSPM, Depth-ScSPM, and RGBD-ScSPM.
NN classifier is used for recognition. In each subfigure, the x-coordinate is the number of the dimension of all the algorithms on the test set and the y-coordinate
is the average recognition.

Fig. 7. Box plots of different methods for NYU Depth V1 dataset using ScSPM. NN classifier is used for recognition. There are three subfigures, each of
which corresponds to the performance obtained from a particular feature dataset. For all subfigures, we set the number of dimensionalities of all the algorithms
on the test set to 6.

trast to other algorithms, RPSL is more efficient and obtains
a more compact representation than other dimension reduc-
tion algorithms. This is because the lasso penalty effectively
helps select the most valuable features for the subsequent
classification.

Figs. 5 and 7 show the box-and-whisker plots of different
methods. There are six subfigures, each of which corresponds
to the performance obtained from a particular feature dataset.
For all subfigures, we set the number of dimensionalities of
all the algorithms on the test set to 6. It can be observed
that RPSL achieves the most robust recognition performance,
because it simultaneously considers the within-class near-
est neighborhood ranks, between-class nearest neighborhood
ranks, classification error minimization of the between-class
samples and sparsity.

Fig. 8 shows RPSL classification confusion matrix for one
test split. Average classification rates for individual classes are
listed along the diagonal. It is not surprising that confusions
occur between bedroom and living room, because there are
very similar things in these two scenes, such as chair and
desk. Also it can be seen from example images in Fig. 2 that
there is confusion between bedroom and living room. From
the confusion matrix we can also find that Office is confused
with Kitchen and Bedroom.

Fig. 9 shows the coefficient path of RPSL obtained by
LARS on one training split. According to the proposed RPSL
algorithm, all entries of a column of the project matrix are

Fig. 8. RPSL classification confusion matrix for one test split. The NN
classifier is used for recognition.

set to zero in the initial stage. LARS iteratively finds the
most correlated entry and adds it into the active set. In this
procedure, we observe that each coefficient path changes its
direction when a new variable is added into the active set.
These tracks are called coefficient path in LARS and interpret
that RPSL selects valuable features iteratively.
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TABLE III

Scene Classification Results on the NYU DEPTH V1 Using LLC (%)

TABLE IV

Scene Classification Results on the NYU DEPTH V1 Using ScSPM (%)

Fig. 9. Coefficient path of LARS for RPSL. This figure shows the entries of
the first column of the projection matrix vs. the L1-norm in RPSL obtained
by LARS.

In addition, by utilizing LIBSVM, we conduct the SVM
(with Gaussian kernel) classification experiments to investigate
the influence of classifier. Table III and IV report the average
accuracy and standard deviation of all the algorithms on the
test sets of all splits. The number of dimensionalities of all
the algorithms is set to six.

In Table V, we compare the proposed RPSL with PCA,
SPCA, LDA, SLPP and DLA on the fifteen scene categories.
To be clear, under the same experimental setting, we have
tested the Linear SVM classifier on the LLC represent fea-

TABLE V

Scene Classification Results on the SCENE 15 Using LLC (%)

d PCA LDA RPSL DLA SLPP SPCA

1 16.7 22.6 24.5 16.6 20.8 10.8
2 29.6 37.9 37.1 29.3 31.4 20.4
3 37.9 46.1 49.2 35.1 38.6 34.1
4 43.2 51.6 56.7 40.2 44.2 40.9
5 47.7 55.4 60.4 44.9 49.0 43.4
6 50.2 58.5 61.2 49.0 51.2 48.2
7 52.4 61.9 61.8 51.1 53.8 50.4
8 53.4 64.2 63.9 53.4 56.9 52.8
9 54.0 66.3 66.6 57.4 59.9 53.8
10 55.2 67.9 68.3 59.6 61.1 54.3
11 56.0 68.9 67.2 62.1 63.6 55.2
12 56.3 70.0 68.3 67.0 64.5 55.8
13 56.7 71.2 71.5 71.0 65.9 56.3
14 56.6 72.0 76.1 75.2 66.5 56.5

d is the reduced dimensions.

ture dataset. The average accuracy of scene classification
is 74.2%.

The main observations from the recognition accuracy com-
parisons are as follows.

1) These algorithms can be grouped into three levels
according to their average recognition rate. PCA and
SPCA are not promising, because they ignore the class
label information. DLA and SLPP are at the middle
level. Because the class label information is considered,
their performance is superior to unsupervised algo-
rithms. RPSL and LDA are at the top level. Since RPSL
preserves the rank order information in a local patch, it
outperforms LDA.
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2) We compare the proposed scheme with baselines, in
terms of average accuracy in Tables II–IV. It can
be observed that the proposed RPSL are helpful for
enhancing the classification performance for LLC based
scene classification. This is because the sparsity of
RPSL decreases non-discriminative features signifi-
cantly. When the number of original features is much
larger than the number of classes, the sparsity is im-
portant for estimating a robust projection matrix for
reducing the dimensionality.

3) If we ignore the dimensionality of reduced feature space,
DLA achieves the highest accuracy in most situations.
However, in contrast to conventional dense projection
matrices, a sparse projection matrix interprets the gen-
erated low-dimensional representation by linking it with
a small number of original features and reduces the
computational cost in the testing stage. In addition, the
sparse projection matrix has an advantage in psycholog-
ical interpretations.

4) The NN classifier and SVM perform similarly after
dimension reduction.

5) RPSL is a general sparse learning algorithm and can be
applied to scene classification without depth informa-
tion.

6) LLC is more robust than ScSPM on Kinect based scene
classification.

V. Conclusion

In this paper, we presented a new dimension reduction
method termed RPSL for scene classification. RPSL preserved
the rank order information and obtained a sparse projection
matrix, so it reduced the concentration of the measure phe-
nomenon and obtained the parsimony in computation. In ad-
dition, the minimization of classification error was considered
to facilitate classification. By utilizing a series of equivalent
transformations, we can transform the objective function of
RPSL into a lasso penalized least-squares problem.

Compared to the classical dimension reduction algorithms,
such as principal component analysis, linear discriminant
analysis, discriminative locality alignment, supervised locality
preserving projections, and sparse principal component analy-
sis, RPSL showed many competitive and attractive properties
for Kinect-based scene classification.
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