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Discrimination between Upstairs and Downstairs Based on

Accelerometer
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Fig.1  The block diagram of the classification algorithm.

their trousers pocket and shirt pocket respectively. In addi-
tion to fixing it on the waist belt, the accelerometer located
in the trousers pocket or shirt pocket is not fixed. As the
sensor is not fixed to the body, it may move randomly in
the pocket (e.g., rotation) which can continuously change
the orientation between accelerometer and subject’s body.
In order to extract the actual vertical acceleration signal (ac-
celeration signal of gravitational direction), a calibration al-
gorithm [1 1] is used. The actual vertical acceleration signal
is calibrated as:

o = (i), ay(i), ay(D) e D (1)

i)) is the dynamic acceleration sig-

where (a(i), d(i). a
(@ s means 9y eans % _mean)

nal; Dy = ” is the actual gravi-

(@ means @y _means Te_mean

; 7 is an average ac-
tational direction; (&,_eans @ _mean> @ _nean) 19 A0 AVETAZE AC
celeration vector calculated from tri-axial ac sig-
nal when the sensor is static. )

2.2 Feature Extraction

The following two features are extracted from the calibrated
vertical acceleration signal to identify upstairs and down-
stairs. (1) Interquartile Range (IQR) and (2) Wavelet En-
ergy (WE). Figure 2 shows differences in the two feature
values, which are effective to discriminate between upstairs
and downstairs.

IQR is equal to the difference between the third and
first quartiles in descriptive statistics. Just like variance and

(a) Differences in JQR (b) Differences in WE

Fig.2  Differences in feature values between upstairs and downstairs.

fig. 3 Performance comparison for the different window size.

standard deviation, IQR is a measure of statistical disper-
sion, but not affected by outliers or extreme values. This
feature can support discrimination between activities with
similar mean values and avoid the effect on range caused by
extreme values in the acceleration data. From Fig.2 (a), it
can be seen that the distribution values of IQR for upstairs
are very low when the distribution values of IQR for down-
stairs are high, and vice versa.

Wavelet energy (WE) is calculated as the sum of the
squared decomposed wavelet coefficients of the vertical ac-
celeration signal. Because the low-frequency components
in the vertical direction correspond to the gravity, the high-
frequency components are calculated as the energy of the
vertical direction. Daubechies wavelet of order 5 is used
to decompose the calibrated vertical acceleration signal five
levels. Wavelet coeffici of high-frequency P
in the four and five level are extracted. Fig. 2(b) shows that
the wavelet energy of downstai i greater than that of

upstairs. The form of the WE can be given by
s
WE = )" D! @

where ¢D; are coefficients of details in the i level.

The IQR feature and WE feature are both extracted on
sliding windows with 50% overlap which has been demon-
strated success [12],[13]. Figure 3 illustrates the perfor-
mance comparison for the different window size based on
IQR feature and WE feature, respectively.

According to Fig. 3, the IQR feature is extracted us-
ing a widow size of 64 samples and the WE feature
racted using a window size of 512 samples pectively.
Then these two features are concatenated as a feature set.

2.3 Feature Subset Selection (FSS) with the Wrapper

For the above extracted feature set, some features may be



LETTER

irrelevant or redundant and not contribute to improve the
recognition accuracy. Furthermore, the computational speed
may be slow because of the high dimension of the feature
set. Thus, feature subset selection (FSS) is taken into ac-
count in the classification algorithm. The wrapper approach
is one of the well-known approaches for FSS in machine
learning [14] and can select effective feature subsets with-
out ignoring the induction algorithm.

The FSS wrapper algorithm conducts a search for a
good subset using the induction algorithm itself as part of
the evaluation function. The accuracy of the induced cl
fiers is estimated using accuracy estimation techniques [14].
The wrapper approach to FSS is described as follows:

3.1 Feature Selection Search

A feature selection search requires a state space, an initial
state, a termination condition, and a search engine [14]. The
search space organization that we chose is such that each
state represents a feature subset. For n features, there are n
bits in each state, and each bit indicates whether a feature is
present (1) or absent (0). Adding or deleting a single feature
from a state is chosen to use as operators, which determine
the connectivity between the states. The size of the search
space for n features is O(2n), so it is impractical to search
the whole space exhaustively, unless n is small. We chose
a best-first search engine that starts with the empty set of
features and searches forward. Termination condition is 5
backtracking, which depends on the search engine.

2.3.2 Feature Evaluation

Since we do not know the actual accuracy of the in-
duced classifier, we use accuracy estimation [15] as both the
heuristic function and the evaluation function. The accuracy
estimation method used is five-fold cross-validation [15], re-
peated multiple times with a small penalty (0.1%) for every
feature. The number of repetitions is determined by the stan-
dard deviation of the accuracy estimate.

233 Induction Algorithm

The induction algorithm used is a Support Vector Machine
(SVM) [16] with One-versus-One strategy (OVO), in which
a set of binary classifiers are constructed using correspond-
ing data from two different classes. In classification we use
the voting strategy of “Max-Wins” to produce the output. In
case that two classes have identical votes, though it may not
be a good strategy, now we simply select the one with the
smallest index.

The induction algorithm is run on the dataset, usually
partitioned into internal training and holdout sets, with dif-
ferent sets of features removed from the data. The feature
subset with the highest evaluation osen as the optimal
set on which to run the induction algorithm. The resulting
classifier is then evaluated on an independent test set that
was not used during the search. In this paper, our dataset is
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tested using leave-one-subject-out cross-validation.
3. Experimental Design and Results
3.1 Experimental Data

The researchers usually collected data from a very small
number of subjects, and each activity is often performed
more than twice by the same subject[6],[9],[101,[20]. In
this study, however, we use a more challenge dataset, SCUT-
NAA [17], which contains 1278 samples of ten activities us-
ing only one tri-axial accelerometer in naturalistic settings.
42 different subjects (32 males and 10 females) placed the
accelerometer alternatively on their waist belt or in their
trousers pocket or shirt pocket as they performed each ac-
tivity. The data d by the tri-axial acc was
transmitted to a PDA wirelessly over Bluetooth. The only
two activities, namely, downstairs and upstairs, are used in
this paper. Figure 4 shows a subject’s example of the accel-
eration signal along the x-, y-, and z- axis respectively.

3.2 Performance Comparison and Analysis

To validate the effectiveness of the proposed cla
tion algorithm, we carry out a leave-one-subject-out cross-
validation method. To justify the necessity and effectiveness
of the proposed vertical acceleration calibration and FSS
wrapper, the following recognition performance are studied.
1) The recognition results both with calibration and with-
out calibration are compared in Table 2. These results show
that the total average accuracy with calibration is 95.64%,
in: ng by 3.18% compared with the results without cal-
ibration. 2) Table 3 shows the recognition results both using
the FSS wrapper and not using the FSS wrapper. The total
average accuracy using the FSS wrapper is 95.64%, increas-
ing by 13.90% compared with the results without the FSS
wrapper step. This indicates that the FSS wrapper approach
can significantly improve the recognition performance.

The performance comparison of the proposed features
(IQR and WE) against the widely used time-domain features

Cloth pocket Trousers pocket

Fig.4 The acceleration signal of downstairs for different sensor loca
tions.

Table2  Recognition Results with or without calibration (%).

Sensor location_| _ Waist belt_| Shirt packet | Trousers pocket

Calibration or Not | No_| Yes | No | Yes | No [ Yes
downstairs | 9762 | 100 [90.48]92.86|97.62| 100
upstairs 90.48 9524 [ 88,10 9048 [90.45| 95.04
average 94.05 |97.62{89.29]91.67[94.05| 97.62
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Table3  Recognition resuls with or without FSS wrapper (%).

Sensor location | Waist belt

Shirt pocket | Trousers pocket
FSS or Not No | ESS | No | FSS | No | PSS
FSS | wrapper | FSS | wrapper | FSS | wrapper

IEICE TRANS, INE & SYST, VOL.E94-D, NO.6 JUNE

Table 6 Confusion matrix for different sensor settings down = down-
stairs; up = upstairs

down = downstairs; up = upstairs

Recognized as

S 90.48 100 76.19| 92.86 |83.33 100 Waist belt Shirt pocket | Trousers pocket | Mixed data

upstairs 8333 | 9524 [8095| 9048 |76.19| 9524 down | up |down| wp | down | up |down| up

average 86.90 | 97.62 |78.57| 91.67 |79.76| 97.62 |do\\‘n 42 0 39 3 42 0 116 10

w | 2 40| 4 | 38 2 40 3 | 123

Table4  Accuracy based on three features for different sensor locations.

‘Sensor “Waist belt Shirt pocket Trous that, in 42 subjects, no one’s downstairs activity is recog.
location nized as upstairs and only 2 subjects’ upstairs activities are
Features | TDF | FFT [IQR+ | TDF | FFT |IQR+ | TDF | FFT |1QR+ recognized as downstairs when the sensor is located on the

WE WE WE
downstairs| 90.48 | 90.48 | 100 | 76.19 | 83.33 [ 92.86 | 8810 [ 97.62 | 100
upstairs | 92.86 | 92.86 |95.24 | 8571 92.86 | 90.48 | 90.48 | 90.48 | 95.24
average | 91.67|91.67|97.62 | $0.95 | 88.10 91.67 [ 89.20 | 94.05 [ 97.62

Table 5 Accuracy based on three features for the mixed data.

Features | TDF FFT_ | IQR+WE

downstairs 9048 91.27 9206
upstaits. 90.48 90.48 97.62
average 90.48 90.87 94.84

(TDF)[9],[10], [17] and FFT features [17] is summarized in
[able 4. The Four traditional time-domain features (mean,
standard deviation, energy, and correlation) and the first 32
FFT coefficients are extracted from each axis of accelera-
tion data, respectively, as time-domain feature set and FFT
feature set. Then, the FSS wrapper is used for time-domain
feature set and FFT feature set. Finally, SVM is also used as
a classifier for these two features.

Overall, the recognition rates based on the proposed
features are highest for every different sensor location, and
the average of which outperforms time-domain features with
a 8.34% accuracy improvement and FFT features with a
4.37% accuracy improvement, respectively. Although the
sensor is located in different position, our proposed features
perform better, the algorithm based on which recognizes up-
stairs and downstairs with 95.64% average accuracy.

Table 5 shows the recognition results based on TDF,
FFT, and IQR+WE for the mixed data from all sensor loca-
tions, with the wrapper feature selection. From Tables 4
and 5, it is worthwhile to note that the average accuracy
(94.84%) for the mixed data is only 0.80% lower than the
average accuracy of three different sensor locations, which
seems acceptable because the mixed data increases the com-
plexity of the acceleration signal and further increases the
difficulty of the classification. Even so, the recognition rate
based on the proposed features is the highest for the mixed
data. Obviously, all these results show the superiority of
the proposed features, comparing with previous widely used
features.

To demonstrate the proposed algorithm can effectively
recognized the difference between downstairs and upstairs,
we analyze the confusion matrices. Table 6 shows the con-
fusion matrix for different sensor settings. It can be seen

waist belt or in the trousers pocket. Even when the sensor
is focated in the shirt pocket, only 3 of 42 subjects” down-
stairs activities are recognized as upstairs and 4 subjects’
upstairs are recognized as downstairs. Finally, for the mixed
data from all sensor locations, only 3 of 126 upstairs activ-
ities are recognized as downstairs and 10 of 126 downstairs
are recognized as upstairs. Overall, the misidentification be-
tween downstairs and upstairs has been effectively reduced.

4. Conclusions

This paper presents an algorithm for the classification of hu-
man upstairs and downstairs using a tri-axial accelerometer.
First, the vertical acceleration signal is calibrated through
estimating the gravitational direction. Then, two features
(IQR and WE) are extracted from the calibrated acceleration
signal. Thereafter, FSS wrapper approach is used to select
an efficient feature set. Finally, SVM is adopted as a classi-
fier. The average accuracy using the proposed algorithm for
the different sensor locations is 95.64%, which outperforms
time-domain features with a 8.34% accuracy improvement
and FFT features with a 4.37% accuracy improvement, re-
spectively. Although the sensor is located in different po-
sition, our proposed features perform better. The algorithm
recognizes upstairs and downstairs with 94.84% accuracy
even for the mixed data from all sensor locations. The ex-
perimental results have confirmed the effectiveness of the
proposed algorithm.
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