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Abstract—In this paper, we aim to propose an 
unsupervised feature ranking algorithm for evaluating 
features using discovered biclusters which are local 
patterns extracted from a data matrix. The biclusters can 
be expressed as sub-matrices which are used for scoring 
relevant features from two aspects, i.e. the 
interdependence of features and the separability of 
instances. The features are thereby ranked with respect to 
their accumulated scores from the total discovered 
biclusters before the pattern classification. Experimental 
results show that this proposed algorithm can yield 
comparable or even better performance in comparison 
with the well-known Fisher Score, Laplacian Score and 
Variance Score using several UCI data sets. 

Keywords—feature selection, Bicluster score, unsupervised 
learning

I. INTRODUCTION 

Feature selection is an important preprocessing step 
before recognizing meaningful patterns from a data set with a 
large number of features. Many studies have shown that 
features (dimensionality) can be reduced without degrading 
classification/clustering performance [1,2]. Selecting an 
appropriate subset of more representative features (or 
dimensions) can even improve the identification performance 
for patterns. Feature selection is therefore regarded as an 
important preprocessing step for analyzing various sorts of 
data analysis.  

The methods of feature selection can be grouped into two 
categories, i.e. the filter [3] and wrapper [4] methods. Most of 
the filter and wrapper methods for feature selection can be 
regarded as supervised algorithms since the class labels are 
used. Even the presence of class label, it is a challenging 
problem. Because the class labels are often unavailable in real 
practices, we discuss unsupervised learning which is more 
challenging. Some unsupervised methods [11, 12] have been 
designed to find good features according to the separability of 
instances. Dy et al. [5] described an unsupervised wrapper 
method using an expectation-maximization (EM) algorithm. 
The quality of clusters obtained from different feature subsets 
are used for measuring cluster separability. In more recent 
work [13, 14], feature similarity was measured for detecting 
redundant features. Law et al. [15] proposed a concept of 

feature saliency estimated using an EM algorithm for 
simultaneously selecting features and clustering instances.  

In both filter and wrapper methods, the optimal feature 
subset needs to be found. Accordingly, a number of methods 
including exhaustive search [1], sequential forward (backward) 
selection [5], sequential forward (backward) floating search 
[6], evolutionary search [7], etc. are performed to examine 
combinations of feature subsets. Because the computational 
complexity quickly increases with the number of features, it is 
always impractical to evaluate a large number of feature 
subsets. To overcome this problem, a number of filter methods 
adopt the ranking method [11, 12, 17], in which the original d
features are individually assessed and the m (<d) best features 
can be selected for subsequent pattern analysis. Although these 
ranking methods are much faster than that of exhaustively (or 
heuristically) searching, it has been recognized that the subset 
of individually “good” features may not collectively provide 
good classification performance [8], mainly due to the lack of 
information about feature inter-relations.  

Figure 1. An example of bicluster. A bicluster with constant columns is 
formed by the highlighted elements which are actually a sub-matrix with a 
local coherent pattern. 

In recent years, more and more attentions have been paid 
to finding biclusters which are local coherent patterns with a 
subset of instances only under a certain subset of features in 
many data [9]. An example can be seen in Fig. 1, where the 
aggregated rows (instances) and columns (features) are not 
fully consecutive. The methods for detecting biclusters have 
been proposed for gene expression profiling in microarray data 
[10]. Because a bicluster contains a subset of experimental 
conditions and a subset of genes, the inter-relationships among 
the conditions and those among the genes can be revealed. In 
another words, due to the intrinsic idea of bi-dimensional 
clustering, the discovered biclusters are able to provide 
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important clues for extracting feature interdependencies and 
clusters of instances, and are therefore potentially useful for 
evaluating features by simultaneously considering both feature 
interdependencies and instance separability. 

In this paper, we propose a new unsupervised feature 
ranking algorithm based on the discovery of biclusters. 
Because this method incorporates a biclustering algorithm to 
discover biclusters and ranks the features, it has some 
characteristics of both feature ranking and wrapper methods 
and can therefore be viewed as a hybrid model. Its main 
distinction from conventional wrapper methods is that it ranks 
the features instead of searching for optimal feature subsets 
without the determination of the number of clusters, hence 
reducing the computational complexity. Meanwhile, unlike 
some ranking filter methods that score the relevance between 
an individual feature and the class labels, the feature 
interdependencies can be well considered in this method 
according to the feature subsets extracted from these biclusters. 
As a result, we make use of the discovered biclusters to 
evaluate features from two aspects, i.e. the interdependencies 
among features and the separability of instances. By 
considering both the feature correlations and instance 
separability in evaluating the features, we propose a scoring 
scheme to rank each of the features and test its performance 
using several often used UCI data sets [16]. This feature 
selection algorithm based on the discovered biclusters is 
named as Bicluster score in this paper. 

This paper is organized as follows. Section II introduces 
the proposed algorithm in detail. Section III presents the 
experimental results and the last section draws conclusions for 
the proposed algorithm. 

II. THE UNSUPERVISED FEATURE RANKING ALGORITHM

A. Basic Idea 

As illustrated in Fig. 1, a bicluster including a subset of 
rows (instances) and a subset of columns (features) indicates a 
sub-matrix which can be viewed as a local coherent pattern. In 
such a pattern, all of the features contained in the sub-matrix 
have the same contribution to the identification of the 
clustered instances, indicating an inter-correlation among them. 
Similarly, the correlation among these instances can also be 
revealed, and they can be represented as a cluster discovered 
under the feature subset, indicating a successful separation 
from the other instances. Thus, it is observed that a well 
discovered bicluster can provide useful information about both 
the inter-correlations among features in the feature subset and 
the separability of the instance subset from the others under 
the feature subset. In this paper, we make use of the biclusters 
found in a data matrix to score the features and this new 
scoring scheme is named as Bicluster Score. 

In order to use the intrinsic information contained in a 
bicluster for evaluating features, we firstly propose an 
effective biclustering algorithm which converts the problem of 
searching for biclusters into two easy-to-apply procedures: 
conventional hierarchical clustering of instances for each 
feature and heuristic search for the biclusters (sub-matrices) 
associated with the clustered instances. From the discovered 

biclusters, two factors (i.e. the feature interdependencies and 
the instance separabilities) are thereafter considered and 
incorporated into the computation of Bicluster Score for each 
feature. Finally, the features are ranked according to their 
Bicluster Scores. 

Figure 2. Different bicluster patterns. (a) Constant bicluster, (b) constant rows, 
(c) constant columns, (d) coherent values with an additive model, (e) coherent 
values with a multiplicative model, and (f) coherent evolution values in 
columns. 

B. Biclustering Method 

As shown in Fig. 2, biclusters have several different 
models, i.e. the constant, additive, multiplicative, and coherent 
evolutionary models. In recent years, a large number of 
biclustering algorithms have been proposed and successfully 
applied to analysis of microarray gene expression data. Details 
for the biclustering algorithms can be found in [10]. However, 
most of those algorithms are specifically designed for 
analyzing gene expression profiles, where the genes may be 
co-regulated in a scaling, shifting, or even hybrid manner, 
hence cannot be directly used to solve a generalized 
classification/clustering problem. According to the Euclidean 
distance, only the models shown in Figs. 2(a) and (c) can be 
regarded as a group of points being able to form a compact 
cluster in a multi-dimensional space, which can be easily 
recognized using conventional clustering algorithms. 
Consequently, we try to find the biclusters with constant 
columns (Figs. 2(a) and (c)) from a data matrix, where the 
rows denote instances and the columns denote the features.  

In order to extract the biclusters with constant columns, 
we propose a new biclustering algorithm involving three main 
procedures, i.e. (1) discovery of bicluster seeds, (2) heuristic 
formation of biclusters and (3) removal of redundant biclusters. 
In the first procedure, we detect clusters of elements in each of 
the columns. It has been mentioned that the rows of a bicluster 
can be simply extracted using a conventional clustering 
method when the feature subset is determined. However, it is 
not easy to find the feature subset from the full size of features 
for a specific bicluster. Instead of exhaustively searching for 
feature subsets, we attempt to detect a feature subset by 
detecting each of its members in this paper. As demonstrated 
in Figs. 1 and 2(c), the elements under a single column in the 
sub-matrix of a bicluster are approximately the same with a 
small variance, and hence can be found by a directly clustering 
method. As a result, the clustered elements under a single 
column can be thought of as being potentially associated with 
a single or multiple biclusters. A cluster detected in a single 
column is called a bicluster seed. Thus, given a data matrix M
with nr rows and nc columns, we firstly apply an conventional 
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agglomerative hierarchical clustering (HC) method [1] using 
the average linkage for clustering all of the elements under 
each of the columns in the original data matrix, and then 
obtain a preliminary set of bicluster seeds, as formulated by 

( ) ( )[ ] ( ) cdcls njTjHCjNjiC L1,,,, ==   (1) 

( ) ( ){ }ccls njjNijiCsetBS LL 1,1,_ ===     (2)

where ( )dTjHC ,  is the HC algorithm applied to the elements 

under the jth colomn with a pre-set distance threshold Td, 
( )jNcl

 denotes the number of clusters for the jth column, 

( )jiCs ,  the ith bicluster seed under the jth column, and BS_set

is the aggregation of the bicluster seeds detected from all of 
columns. The time complexity of this procedure is O(ncnr

2). 
As aforementioned, each of the detected bicluster seeds in 

BS_set is regarded as a potential part of some unknown 
biclusters. We need to form larger biclusters from these small 
bicluster seeds in the second procedure. The details are 
described as follows. First, according to the number of rows, 
the bicluster seeds in BS_set are sorted in an ascending order. 
Beginning with the bicluster seed with the lowest row number, 
each of the bicluster seeds in BS_set is then expanded along 
the column dimension. Given a bicluster seed with Rj rows, a 
new sub-matrix Ms can be formed with Rj rows and all of the 
nc columns. An optimization procedure is finally required to 
find the largest bicluster that meets a certain homogeneity 
criterion in Ms.  

In this paper, the mean-square-residue (MSR) score [9] 
which has been widely used as a metrics for measuring the 
homogeneity of a bicluster is employed. Given a sub-matrix 
with R rows and C columns, its MSR score is defined by 
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If h(R,C) ≤ δ, accept it as a valid bicluster,   
where eij denotes the element value at the ith row and jth 
column in the bicluster, δ a homogeneity threshold defining 
the maximum allowable dissimilarity within the elements of 
the bicluster, and h(R,C) the value of MSR score for the 
bicluster. The homogeneity threshold is set by users according 
to their respective applications. 

A local search algorithm is conducted to find the largest 
bicluster in Ms. For a submatrix, defining a group of nodes 
denoting its rows and columns, the search is performed by 
iteratively deleting the node that mostly increases the MSR 
score until the score of the refined submatrix is no larger than 
a predefined homogeneity threshold Tm. The algorithm starts 
with every Ms associated with the clusters in BS_set and 
consists of the following steps: 

(i) Input a submatrix M
(ii) Set an array of nodes denoting all of the rows and 
columns of M
(iii) For every node, calculate the MSR score for a new 
submatrix where this node is deleted from M.  

(iv) Delete the node which mostly increases the MSR 
score of M and set the new submatrix as M. 
(v) If the MSR score for M is larger than a predefined 
value Tm, repeat step (ii). Otherwise, output M as the 
largest bicluster. 

The algorithm is applied to each of the bicluster seeds in 
BS_set and the output biclusters are put into a new bicluster set, 
BC_set. This procedure is illustrated in Fig. 3. The complexity 
of this local search algorithm is ( )2O dn , where d is the number 

of clusters in BS_set, and n the number of both rows and 
columns. 

Figure 3. An example for illustrating the procedure of expanding a bicluster 
seed and refining the expanded sub-matrix into a real bicluster. 

The third procedure gets rid of all redundant biclusters 
which are fully overlapped by larger ones. We first rank the 
biclusters in BC_set with respect to their column numbers in 
an ascending order. With the sorted biclusters, a bicluster is 
deleted from BC_set if it is mostly contained by one ranked at 
a lower position. Thereafter, the biclusters reserved in BC_set
are the final output and can be used for feature evaluation. The 
complexity of this procedure is ( )2O n .  This biclustering 

algorithm is summarized in Fig. 4. 

Figure 4. Diagram of the proposed biclustering algorithm. 
Instead of exhaustively or heuristically searching for 

feature subsets in conventional wrapper methods, the 
procedure of searching for the column combination of a 
bicluster in our method is converted into a heuristic refining a 
sub-matrix to output a bicluster. As a result, the proposed 
algorithm is relatively more efficient without the need to 
repeatedly perform a clustering algorithm to evaluate every 
new column combination.  

It is noteworthy that the values of an instance may vary 
greatly under different features. Therefore, we use the 
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following method to normalize each column to ensure that 
most of the values in each column fall into a limited range.    

( )
( ) ( )( )

( )( ) crn njni
jestd

jemeanjie
jie KK 1,1,

,2

,,
, ==

⋅⋅

⋅−
=  (4)

where e(i,j) is the element value at the ith row and jth column, 
mean(e(·,j)) denotes the mean of the elements under the jth 
column, std(e(·,j)) the standard deviation of the jth column, 
and en(i,j) the normalized element value. After the 
normalization of data values, the distance threshold Td and the 
homogeneity threshold Tm are fixedly set to 0.01 and 0.02, 
respectively, in this study. 

C.    Feature Ranking Scheme

Once the biclusters have been found from the data matrix, 
we need to extract information from them which can be used 
to evaluate each of the features. As motivated by the two 
factors (i.e. feature correlation and instance separability) 
mentioned above, a scoring scheme (called Bicluster score) is 
proposed by considering both factors in this study. We define 
two subsidiary scores that stand for the two factors, 
respectively, i.e. the correlation score which measures the 
correlations among features in a feature subset, and the 
separability score which measures the separability of a feature. 
For the kth feature, suppose that it is included by any one of 
biclusters from a bicluster subset Zk, the two scores (denoted 
as Cor_Score and Sep_Score, respectively) are defined as 
follows: 
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where nb,k denotes the number of biclusters in Zk, nf,k(i) the 
number of features for the ith bicluster in Zk, ns,k the number of 
the rows enumerated from all of the biclusters in Zk, μi,k the 
element average for the ith bicluster in Zk under the kth feature, 
and μa,k the average of μi,k, i=1... nb,k. It is observed that in 
Cor_Score, nf,k(i)/nc is the ratio of the number of columns for 
the ith bicluster in Zk to the full length of columns. The 
Cor_Score actually equals the summation of the ratios. If a 
feature is associated with a larger number of biclusters, and/or 
the column dimensions of these biclusters cover a larger 
portion of the full size of dimension, the corresponding 
Cor_Score is larger and vice versa. In Sep_Score, ns,k/nr 

denotes the ratio of the instances which can be clustered by the 
biclustering algorithm to the full number of instances, and 

( )
,

2

, , ,
1

b kn

i k a k b k
i

nμ μ
=

−∑  the squared variance of the cluster centers 

for the kth feature. The larger the ratio and/or the variance are, 
the larger Sep_Score for the feature is.  

Finally, the Bicluster score (denoted as Bic_Score) for 
the kth feature is obtained by considering both of the two 
subsidiary scores, and is expressed as: 
     ( ) ( ) ( )_ _ _Bic Score k Cor Score k Sep Score kα= ⋅ +      (7) 

where ( )_Cor Score k  and ( )_Sep Score k  denote the 

normalized values for Cor_Score(k) and Sep_Score(k), k=1…nc, 

respectively, and α is a regulation coefficient for balancing the 
contributions of the Cor_Score and the Sep_Score to the final 
Bic_Score. The features with higher Bic_Score are viewed as 
being better at characterizing the data clusters and linking with 
other features.

III. EXPERIMENTS

In order to evaluate the performance of the proposed 
feature ranking algorithm, we conduct experiments using 
several standard data sets and make comparisons with three 
popular feature selection algorithms: Variance Score [11], 
Laplacian Score [12] and Fisher Score [11]. The former two 
methods are unsupervised, while Fisher Score is supervised. 

A. UCI Data sets and the Classifier 

We use 3 real world data sets downloaded from UCI 
database [16]. They are wine data, Wisconsin diagnostic breast 
cancer (wdbc) data and congressional voting records (House-
Votes-84) data. The wine data set has 13 features and 178 
instances categorized into 3 groups. The instances are wines 
and the features are chemical components. The wdbc data has 
569 instances and 30 features. It contains two groups, i.e. 
benign and malignant breast tumors. The House-Votes-84 data 
has 435 instances which are congressmen and grouped into 
two parties, i.e. republican and democrat. The features are the 
votes for 16 topics. An affirmative vote is denoted as 1, a 
negative vote is denoted as -1, and an abstaining vote is 
denoted as 0.   

In the experiments, we can generate a pair of training and 
testing sets by randomly selecting half of instances from all 
classes as the training set and setting the remaining half as the 
testing set. For each UCI data, 20 pairs of training and testing 
sets are generated. The feature selection algorithms are then 
applied to the testing sets. The features are ranked according to 
their scores computed by each algorithm. The feature number 
can be preset by users. With a pre-determined feature number, 
the nearest neighborhood (1-NN) method with Euclidean 
distance is used as a classifier to obtain the classification 
accuracy. Following the experimental method used in [17], we 
evaluate our algorithm by comparing the classification 
accuracies obtained by different feature selection algorithms. 
For Bicluster Score, we set the parameter α in (7) to 1.0 when 
comparing with the other three algorithms. 

B. Results 

We summarize the averaged classification accuracies 
using the 20 pairs of data sets for each UCI data in Tables 1, 
and illustrate the simulation results using an example data set 
in Figs. 5-7, for the three UCI data, respectively.  

The accuracies vs. the number of removed features for 
the wine data can be seen in Fig. 5. It is obvious that Bicluster 
score significantly outperforms the others. The reason can be 
explained by the intrinsic properties of the features in wine 
data. Because the features are chemical components contained 
in the wines, the density of one component can influence those 
of the other components. Thus, it is concluded that there are 
strong interdependencies among the features. As stated above, 
our algorithm is good at discovering feature interdependencies 
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and hence can achieve the best results for the wine data. From 
Fig.5 (b), the performance of Bicluster score is approximately 
improved as the balancing parameter α is increasing. It implies 
that considering inter-dependencies of features is able to 
improve the feature selection performance. 
Table 1. Averaged accuracies (in percentage) of different algorithms using the 
UCI datasets. 

Data Bicluster Fisher Variance Laplacian 

wine 80.71±5.77 70.6±2.48 69.76±2.37 69.29±2.36 

wdbc 80.88±8.74 88.73±3.98 75.02±2.21 74.99±2.21 

House-
votes-84 

95.17±0.88 93.92±1.57 87.16±15.22 92.97±3.51 
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Figure 5. Feature selection performance on the wine data sets. (a) The 
classification accuracy, and (b) accuracies against α for Bicluster score. 
 The simulation results for the wdbc data can be seen in 
Fig. 6(a). According to the results, the Fisher score 
outperforms the others. Nevertheless, our algorithm performs 
better than the Variance and Laplacian scores, indicating an 
improved performance of feature selection for the data without 
class labels. According to the description for wdbc data, the 
features are some quantities (such as area, smoothness and 
dimensions) measured from breast tumor regions. Because 
these measures have no significant inter-dependencies, the 
Cor_Score cannot effectively influence the feature orders. 
This explanation can be further proved as shown in Fig. 6(b). 
It is noted that the varying values for the balancing parameter 
α cannot significantly change the classification accuracies, 
indicating its relatively weak effect on the feature selection.  
 For the house-votes-84 data, our algorithm outperforms 
the others. As illustrated in Fig. 7(a), Bicluster score achieves 
comparable (even better) classification accuracies than Fisher 
score, and much better results than the other two unsupervised 

methods. We can conclude that there exist inter-relationships 
among the features which are actually proposals in various 
economic and political fields. Different proposals are likely to 
have overlapped part focused by the public. 
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Figure. 6. Feature selection performance on the wdbc data sets. (a) The 
classification accuracy, and (b) accuracies against α for Bicluster score. 
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Fig.7. Feature selection performance on the house-votes-84 data sets. (a) The 
classification accuracy, and (b) accuracies against α for Bicluster score. 
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In addition, a group of congressmen from a specific party 
may have positive views on a subgroup of proposals and 
negative views on another subgroup. Hence, there exist many 
subsets of features which internally influence each other. Our 
algorithm is able to discover these feature subsets, meanwhile, 
the interactions among these proposals to be voted can 
accordingly help in differentiating the congressmen’s political 
stands. The influence of different values of α is shown in Fig. 
7(b), and provides further support to this point. It can be seen 
that the total classification accuracy keeps increasing as α is 
increased. 

IV. DISCUSSIONS AND CONCLUSTIONS

In this paper, a novel unsupervised feature selection 
algorithm is proposed. This algorithm is based on an 
unsupervised biclustering algorithm which can discover local 
coherent patterns in a data matrix. The discovered local 
patterns including a subset of instances and a subset of 
features simultaneously reveal both the separability of 
instances and inter-dependencies among features. Thus, we 
propose a new scoring scheme which is called Bicluster score. 
Like a wrapper method, Bicluster score firstly discover 
biclusters in a data matrix, then calculate two subsidiary scores 
by considering the clustered instances and features for each 
bicluster, and finally compute the Bicluster score by summing 
the two subsidiary scores.  

The experimental results using three UCI data sets 
demonstrate that Bicluster score can outperform the two often 
used unsupervised feature ranking algorithm and produce 
comparable or even better results than Fisher score which is a 
supervised method. In particular, our algorithm significantly 
outperforms the other three algorithms using the wine data set, 
indicating that the features (chemical components) have 
relatively strong correlations. In contrast, for the wdbc data, 
Fisher score demonstrates the best performance on feature 
selection, showing that the features extracted from breast 
tumor images are relatively independent to each other. As a 
result, our algorithm is unable to improve the classification 
results by considering the correlations among the features. For 
the house-votes-84 data set, our algorithm generates the best 
results, illustrating the features (i.e. the proposals to be voted) 
are inter-related to each other and some of them have similar 
influences on a subgroup of congressmen from a specific 
political organization. 

 In summary, the results demonstrate that Bicluster score 
is able to conduct feature selection on several UCI and real 
microarray data sets with good performance. By discovering 
biclusters and ranking the features according to these 
biclusters, it makes use of both the filter and wrapper methods’ 

characteristics for selecting features and can be expected to be 
suitable for various data sets, especially the ones with strong 
interdependencies among the features.  

REFERENCES

[1] A.K. Jain, R.P.W. Duin, and J.C. Mao, “Statistical pattern recognition: A 
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.1, pp. 4-37, 
2000. 

[2] H. Liu, and L. Yu, “Toward integrating feature selection algorithms for 
classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17, pp. 
491-502, 2005. 

[3] H. Liu, and H. Motoda, Feature Selection for Knowledge Discovery and 
Data Mining, Kluwer Academic, Boston, 2001.  

[4] R. Kohavi, and G.H. John, “Wrappers for feature subset selection,” Artif. 
Intell., vol. 97, no.1-2, pp. 273-324, 1997. 

[5] J.G. Dy, C.E. Brodley, A. Kak, L.S. Broderick, and A.M. Aisen, 
“Unsupervised feature selection applied to content-based retrieval of 
lung images,” IEEE Trans. Pattern Anal. Mach. Intell., vol.25, no.3, pp. 
373-378, 2003. 

[6] P. Pudil, J. Novovicova, and J. Kittler, “Floating search methods in 
feature selection,” Pattern Recogn. Letters, vol.15, no.11, pp. 1119-1125, 
1994. 

[7] Z.X. Zhu, Y.S. Ong, K.W. Wong, and K.T. Seow, “Experimental 
condition selection in whole-genome functional classification,” in: 
Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent 
Systems, Singapore, 2004. 

[8] H.C. Peng, F.H. Long, and C. Ding, “Feature selection based on mutual 
information: Criteria of Max-dependancy, Max-relevance and Min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.8,  
1226-1237, 2005. 

[9] Y. Cheng, and G.M. Church, “Biclustering of Expression Data,” in: 
Proceedings of the Eighth International Conference on Intelligent 
Systems for Molecular Biology (ISMB), 2000, pp. 93-103. 

[10] S.C. Madeira, and A.L.Oliveira, “Biclustering Algorithms for Biological 
Data Analysis: A Survey,” IEEE Trans. Comput. Biol. Bioinform., vol.1 
no.1, pp. 24-45, 2004. 

[11] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford 
University Press, Oxford, 1995. 

[12] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in: 
Advances in Neural Information Processing Systems, 17, MIT Press, 
Cambridge, MA, 2005. 

[13] P. Mitra, C.A. Murthy, S.K. Pal, “Unsupervised feature selection using 
feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol.24, no.3, 
pp. 301-312, 2002. 

[14] H.L. Wei, and S.A. Billings, “Feature subset selection and ranking for 
data dimensionality reduction,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol.29, no.1, pp. 162-166, 2007. 

[15] M. Law, M. Figueiredo, and A.K. Jain, “Simultaneous feature selection 
and clustering using mixture models,” IEEE Trans. Pattern Anal. Mach. 
Intell., vol.26, no.9, pp. 1154-1166, 2004. 

[16] http://www.ics.uci.edu/~mlearn/MLSummary.html

[17] D.Q. Zhang, S.C. Chen, and Z.H. Zhou, “Constraint Score: A new filter 
method for feature selection with pairwise constraints,” Pattern 
Recognition, vol.41, pp.1440-1451, 2008. 

4975



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


