
An Unsupervised Feature Ranking Scheme by
Discovering Biclusters

Qinghua Huang, Lianwen Jin
School of Electronic and Information Engineering

South China University of Technology
Guangzhou, China

qhhuang@scut.edu.cn

Dacheng Tao
School of Computer Engineering

Nanyang Technological University
Singapore 639798

Abstract—In this paper, we aim to propose an
unsupervised feature ranking algorithm for evaluating
features using discovered biclusters which are local
patterns extracted from a data matrix. The biclusters can
be expressed as sub-matrices which are used for scoring
relevant features from two aspects, i.e. the
interdependence of features and the separability of
instances. The features are thereby ranked with respect to
their accumulated scores from the total discovered
biclusters before the pattern classification. Experimental
results show that this proposed algorithm can yield
comparable or even better performance in comparison
with the well-known Fisher Score, Laplacian Score and
Variance Score using several UCI data sets.

Keywords—feature selection, Bicluster score, unsupervised
learning

I. INTRODUCTION

Feature selection is an important preprocessing step
before recognizing meaningful patterns from a data set with a
large number of features. Many studies have shown that
features (dimensionality) can be reduced without degrading
classification/clustering performance [1,2]. Selecting an
appropriate subset of more representative features (or
dimensions) can even improve the identification performance
for patterns. Feature selection is therefore regarded as an
important preprocessing step for analyzing various sorts of
data analysis.

The methods of feature selection can be grouped into two
categories, i.e. the filter [3] and wrapper [4] methods. Most of
the filter and wrapper methods for feature selection can be
regarded as supervised algorithms since the class labels are
used. Even the presence of class label, it is a challenging
problem. Because the class labels are often unavailable in real
practices, we discuss unsupervised learning which is more
challenging. Some unsupervised methods [11, 12] have been
designed to find good features according to the separability of
instances. Dy et al. [5] described an unsupervised wrapper
method using an expectation-maximization (EM) algorithm.
The quality of clusters obtained from different feature subsets
are used for measuring cluster separability. In more recent
work [13, 14], feature similarity was measured for detecting
redundant features. Law et al. [15] proposed a concept of

feature saliency estimated using an EM algorithm for
simultaneously selecting features and clustering instances.

In both filter and wrapper methods, the optimal feature
subset needs to be found. Accordingly, a number of methods
including exhaustive search [1], sequential forward (backward)
selection [5], sequential forward (backward) floating search
[6], evolutionary search [7], etc. are performed to examine
combinations of feature subsets. Because the computational
complexity quickly increases with the number of features, it is
always impractical to evaluate a large number of feature
subsets. To overcome this problem, a number of filter methods
adopt the ranking method [11, 12, 17], in which the original d
features are individually assessed and the m (<d) best features
can be selected for subsequent pattern analysis. Although these
ranking methods are much faster than that of exhaustively (or
heuristically) searching, it has been recognized that the subset
of individually “good” features may not collectively provide
good classification performance [8], mainly due to the lack of
information about feature inter-relations.

Figure 1. An example of bicluster. A bicluster with constant columns is
formed by the highlighted elements which are actually a sub-matrix with a
local coherent pattern.

In recent years, more and more attentions have been paid
to finding biclusters which are local coherent patterns with a
subset of instances only under a certain subset of features in
many data [9]. An example can be seen in Fig. 1, where the
aggregated rows (instances) and columns (features) are not
fully consecutive. The methods for detecting biclusters have
been proposed for gene expression profiling in microarray data
[10]. Because a bicluster contains a subset of experimental
conditions and a subset of genes, the inter-relationships among
the conditions and those among the genes can be revealed. In
another words, due to the intrinsic idea of bi-dimensional
clustering, the discovered biclusters are able to provide

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4970

important clues for extracting feature interdependencies and
clusters of instances, and are therefore potentially useful for
evaluating features by simultaneously considering both feature
interdependencies and instance separability.

In this paper, we propose a new unsupervised feature
ranking algorithm based on the discovery of biclusters.
Because this method incorporates a biclustering algorithm to
discover biclusters and ranks the features, it has some
characteristics of both feature ranking and wrapper methods
and can therefore be viewed as a hybrid model. Its main
distinction from conventional wrapper methods is that it ranks
the features instead of searching for optimal feature subsets
without the determination of the number of clusters, hence
reducing the computational complexity. Meanwhile, unlike
some ranking filter methods that score the relevance between
an individual feature and the class labels, the feature
interdependencies can be well considered in this method
according to the feature subsets extracted from these biclusters.
As a result, we make use of the discovered biclusters to
evaluate features from two aspects, i.e. the interdependencies
among features and the separability of instances. By
considering both the feature correlations and instance
separability in evaluating the features, we propose a scoring
scheme to rank each of the features and test its performance
using several often used UCI data sets [16]. This feature
selection algorithm based on the discovered biclusters is
named as Bicluster score in this paper.

This paper is organized as follows. Section II introduces
the proposed algorithm in detail. Section III presents the
experimental results and the last section draws conclusions for
the proposed algorithm.

II. THE UNSUPERVISED FEATURE RANKING ALGORITHM

A. Basic Idea

As illustrated in Fig. 1, a bicluster including a subset of
rows (instances) and a subset of columns (features) indicates a
sub-matrix which can be viewed as a local coherent pattern. In
such a pattern, all of the features contained in the sub-matrix
have the same contribution to the identification of the
clustered instances, indicating an inter-correlation among them.
Similarly, the correlation among these instances can also be
revealed, and they can be represented as a cluster discovered
under the feature subset, indicating a successful separation
from the other instances. Thus, it is observed that a well
discovered bicluster can provide useful information about both
the inter-correlations among features in the feature subset and
the separability of the instance subset from the others under
the feature subset. In this paper, we make use of the biclusters
found in a data matrix to score the features and this new
scoring scheme is named as Bicluster Score.

In order to use the intrinsic information contained in a
bicluster for evaluating features, we firstly propose an
effective biclustering algorithm which converts the problem of
searching for biclusters into two easy-to-apply procedures:
conventional hierarchical clustering of instances for each
feature and heuristic search for the biclusters (sub-matrices)
associated with the clustered instances. From the discovered

biclusters, two factors (i.e. the feature interdependencies and
the instance separabilities) are thereafter considered and
incorporated into the computation of Bicluster Score for each
feature. Finally, the features are ranked according to their
Bicluster Scores.

Figure 2. Different bicluster patterns. (a) Constant bicluster, (b) constant rows,
(c) constant columns, (d) coherent values with an additive model, (e) coherent
values with a multiplicative model, and (f) coherent evolution values in
columns.

B. Biclustering Method

As shown in Fig. 2, biclusters have several different
models, i.e. the constant, additive, multiplicative, and coherent
evolutionary models. In recent years, a large number of
biclustering algorithms have been proposed and successfully
applied to analysis of microarray gene expression data. Details
for the biclustering algorithms can be found in [10]. However,
most of those algorithms are specifically designed for
analyzing gene expression profiles, where the genes may be
co-regulated in a scaling, shifting, or even hybrid manner,
hence cannot be directly used to solve a generalized
classification/clustering problem. According to the Euclidean
distance, only the models shown in Figs. 2(a) and (c) can be
regarded as a group of points being able to form a compact
cluster in a multi-dimensional space, which can be easily
recognized using conventional clustering algorithms.
Consequently, we try to find the biclusters with constant
columns (Figs. 2(a) and (c)) from a data matrix, where the
rows denote instances and the columns denote the features.

In order to extract the biclusters with constant columns,
we propose a new biclustering algorithm involving three main
procedures, i.e. (1) discovery of bicluster seeds, (2) heuristic
formation of biclusters and (3) removal of redundant biclusters.
In the first procedure, we detect clusters of elements in each of
the columns. It has been mentioned that the rows of a bicluster
can be simply extracted using a conventional clustering
method when the feature subset is determined. However, it is
not easy to find the feature subset from the full size of features
for a specific bicluster. Instead of exhaustively searching for
feature subsets, we attempt to detect a feature subset by
detecting each of its members in this paper. As demonstrated
in Figs. 1 and 2(c), the elements under a single column in the
sub-matrix of a bicluster are approximately the same with a
small variance, and hence can be found by a directly clustering
method. As a result, the clustered elements under a single
column can be thought of as being potentially associated with
a single or multiple biclusters. A cluster detected in a single
column is called a bicluster seed. Thus, given a data matrix M
with nr rows and nc columns, we firstly apply an conventional

4971

agglomerative hierarchical clustering (HC) method [1] using
the average linkage for clustering all of the elements under
each of the columns in the original data matrix, and then
obtain a preliminary set of bicluster seeds, as formulated by

() ()[] () cdcls njTjHCjNjiC L1,,,, == (1)

() (){ }ccls njjNijiCsetBS LL 1,1,_ === (2)

where ()dTjHC , is the HC algorithm applied to the elements

under the jth colomn with a pre-set distance threshold Td,
()jNcl

 denotes the number of clusters for the jth column,

()jiCs , the ith bicluster seed under the jth column, and BS_set

is the aggregation of the bicluster seeds detected from all of
columns. The time complexity of this procedure is O(ncnr

2).
As aforementioned, each of the detected bicluster seeds in

BS_set is regarded as a potential part of some unknown
biclusters. We need to form larger biclusters from these small
bicluster seeds in the second procedure. The details are
described as follows. First, according to the number of rows,
the bicluster seeds in BS_set are sorted in an ascending order.
Beginning with the bicluster seed with the lowest row number,
each of the bicluster seeds in BS_set is then expanded along
the column dimension. Given a bicluster seed with Rj rows, a
new sub-matrix Ms can be formed with Rj rows and all of the
nc columns. An optimization procedure is finally required to
find the largest bicluster that meets a certain homogeneity
criterion in Ms.

In this paper, the mean-square-residue (MSR) score [9]
which has been widely used as a metrics for measuring the
homogeneity of a bicluster is employed. Given a sub-matrix
with R rows and C columns, its MSR score is defined by

()
2

,

1
(,) ij iC Rj RC

i R j C

h R C e e e e
R C ∈ ∈

= − − +
⋅

∑
1 1

,iC ij Gj ij
j C i R

e e e e
C R∈ ∈

= =∑ ∑ (3)

,

1
RC ij

i R j C

e e
R C ∈ ∈

=
⋅

∑
If h(R,C) ≤ δ, accept it as a valid bicluster,
where eij denotes the element value at the ith row and jth
column in the bicluster, δ a homogeneity threshold defining
the maximum allowable dissimilarity within the elements of
the bicluster, and h(R,C) the value of MSR score for the
bicluster. The homogeneity threshold is set by users according
to their respective applications.

A local search algorithm is conducted to find the largest
bicluster in Ms. For a submatrix, defining a group of nodes
denoting its rows and columns, the search is performed by
iteratively deleting the node that mostly increases the MSR
score until the score of the refined submatrix is no larger than
a predefined homogeneity threshold Tm. The algorithm starts
with every Ms associated with the clusters in BS_set and
consists of the following steps:

(i) Input a submatrix M
(ii) Set an array of nodes denoting all of the rows and
columns of M
(iii) For every node, calculate the MSR score for a new
submatrix where this node is deleted from M.

(iv) Delete the node which mostly increases the MSR
score of M and set the new submatrix as M.
(v) If the MSR score for M is larger than a predefined
value Tm, repeat step (ii). Otherwise, output M as the
largest bicluster.

The algorithm is applied to each of the bicluster seeds in
BS_set and the output biclusters are put into a new bicluster set,
BC_set. This procedure is illustrated in Fig. 3. The complexity
of this local search algorithm is ()2O dn , where d is the number

of clusters in BS_set, and n the number of both rows and
columns.

Figure 3. An example for illustrating the procedure of expanding a bicluster
seed and refining the expanded sub-matrix into a real bicluster.

The third procedure gets rid of all redundant biclusters
which are fully overlapped by larger ones. We first rank the
biclusters in BC_set with respect to their column numbers in
an ascending order. With the sorted biclusters, a bicluster is
deleted from BC_set if it is mostly contained by one ranked at
a lower position. Thereafter, the biclusters reserved in BC_set
are the final output and can be used for feature evaluation. The
complexity of this procedure is ()2O n . This biclustering

algorithm is summarized in Fig. 4.

Figure 4. Diagram of the proposed biclustering algorithm.
Instead of exhaustively or heuristically searching for

feature subsets in conventional wrapper methods, the
procedure of searching for the column combination of a
bicluster in our method is converted into a heuristic refining a
sub-matrix to output a bicluster. As a result, the proposed
algorithm is relatively more efficient without the need to
repeatedly perform a clustering algorithm to evaluate every
new column combination.

It is noteworthy that the values of an instance may vary
greatly under different features. Therefore, we use the

4972

following method to normalize each column to ensure that
most of the values in each column fall into a limited range.

()
() ()()

()() crn njni
jestd

jemeanjie
jie KK 1,1,

,2

,,
, ==

⋅⋅

⋅−
= (4)

where e(i,j) is the element value at the ith row and jth column,
mean(e(·,j)) denotes the mean of the elements under the jth
column, std(e(·,j)) the standard deviation of the jth column,
and en(i,j) the normalized element value. After the
normalization of data values, the distance threshold Td and the
homogeneity threshold Tm are fixedly set to 0.01 and 0.02,
respectively, in this study.

C. Feature Ranking Scheme

Once the biclusters have been found from the data matrix,
we need to extract information from them which can be used
to evaluate each of the features. As motivated by the two
factors (i.e. feature correlation and instance separability)
mentioned above, a scoring scheme (called Bicluster score) is
proposed by considering both factors in this study. We define
two subsidiary scores that stand for the two factors,
respectively, i.e. the correlation score which measures the
correlations among features in a feature subset, and the
separability score which measures the separability of a feature.
For the kth feature, suppose that it is included by any one of
biclusters from a bicluster subset Zk, the two scores (denoted
as Cor_Score and Sep_Score, respectively) are defined as
follows:

()
()

∑
=

=
kbn

i c

kf

n

in
kScoreCor

,

1

,_ (5)

() ()
,

2,
, , ,

1

_
b kn

s k
i k a k b k

ir

n
Sep Score k n

n
μ μ

=

= −∑ (6)

where nb,k denotes the number of biclusters in Zk, nf,k(i) the
number of features for the ith bicluster in Zk, ns,k the number of
the rows enumerated from all of the biclusters in Zk, μi,k the
element average for the ith bicluster in Zk under the kth feature,
and μa,k the average of μi,k, i=1... nb,k. It is observed that in
Cor_Score, nf,k(i)/nc is the ratio of the number of columns for
the ith bicluster in Zk to the full length of columns. The
Cor_Score actually equals the summation of the ratios. If a
feature is associated with a larger number of biclusters, and/or
the column dimensions of these biclusters cover a larger
portion of the full size of dimension, the corresponding
Cor_Score is larger and vice versa. In Sep_Score, ns,k/nr

denotes the ratio of the instances which can be clustered by the
biclustering algorithm to the full number of instances, and

()
,

2

, , ,
1

b kn

i k a k b k
i

nμ μ
=

−∑ the squared variance of the cluster centers

for the kth feature. The larger the ratio and/or the variance are,
the larger Sep_Score for the feature is.

Finally, the Bicluster score (denoted as Bic_Score) for
the kth feature is obtained by considering both of the two
subsidiary scores, and is expressed as:
 () () ()_ _ _Bic Score k Cor Score k Sep Score kα= ⋅ + (7)

where ()_Cor Score k and ()_Sep Score k denote the

normalized values for Cor_Score(k) and Sep_Score(k), k=1…nc,

respectively, and α is a regulation coefficient for balancing the
contributions of the Cor_Score and the Sep_Score to the final
Bic_Score. The features with higher Bic_Score are viewed as
being better at characterizing the data clusters and linking with
other features.

III. EXPERIMENTS

In order to evaluate the performance of the proposed
feature ranking algorithm, we conduct experiments using
several standard data sets and make comparisons with three
popular feature selection algorithms: Variance Score [11],
Laplacian Score [12] and Fisher Score [11]. The former two
methods are unsupervised, while Fisher Score is supervised.

A. UCI Data sets and the Classifier

We use 3 real world data sets downloaded from UCI
database [16]. They are wine data, Wisconsin diagnostic breast
cancer (wdbc) data and congressional voting records (House-
Votes-84) data. The wine data set has 13 features and 178
instances categorized into 3 groups. The instances are wines
and the features are chemical components. The wdbc data has
569 instances and 30 features. It contains two groups, i.e.
benign and malignant breast tumors. The House-Votes-84 data
has 435 instances which are congressmen and grouped into
two parties, i.e. republican and democrat. The features are the
votes for 16 topics. An affirmative vote is denoted as 1, a
negative vote is denoted as -1, and an abstaining vote is
denoted as 0.

In the experiments, we can generate a pair of training and
testing sets by randomly selecting half of instances from all
classes as the training set and setting the remaining half as the
testing set. For each UCI data, 20 pairs of training and testing
sets are generated. The feature selection algorithms are then
applied to the testing sets. The features are ranked according to
their scores computed by each algorithm. The feature number
can be preset by users. With a pre-determined feature number,
the nearest neighborhood (1-NN) method with Euclidean
distance is used as a classifier to obtain the classification
accuracy. Following the experimental method used in [17], we
evaluate our algorithm by comparing the classification
accuracies obtained by different feature selection algorithms.
For Bicluster Score, we set the parameter α in (7) to 1.0 when
comparing with the other three algorithms.

B. Results

We summarize the averaged classification accuracies
using the 20 pairs of data sets for each UCI data in Tables 1,
and illustrate the simulation results using an example data set
in Figs. 5-7, for the three UCI data, respectively.

The accuracies vs. the number of removed features for
the wine data can be seen in Fig. 5. It is obvious that Bicluster
score significantly outperforms the others. The reason can be
explained by the intrinsic properties of the features in wine
data. Because the features are chemical components contained
in the wines, the density of one component can influence those
of the other components. Thus, it is concluded that there are
strong interdependencies among the features. As stated above,
our algorithm is good at discovering feature interdependencies

4973

and hence can achieve the best results for the wine data. From
Fig.5 (b), the performance of Bicluster score is approximately
improved as the balancing parameter α is increasing. It implies
that considering inter-dependencies of features is able to
improve the feature selection performance.
Table 1. Averaged accuracies (in percentage) of different algorithms using the
UCI datasets.

Data Bicluster Fisher Variance Laplacian

wine 80.71±5.77 70.6±2.48 69.76±2.37 69.29±2.36

wdbc 80.88±8.74 88.73±3.98 75.02±2.21 74.99±2.21

House-
votes-84

95.17±0.88 93.92±1.57 87.16±15.22 92.97±3.51

0 2 4 6 8 10 12

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of removed features

A
cc

u
ra

cy

Bicluster
Fisher
Variance
Laplacian

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.82

0.83

0.84

0.85

0.86

0.87

0.88

Alpha

A
cc

u
ra

cy

(b)
Figure 5. Feature selection performance on the wine data sets. (a) The
classification accuracy, and (b) accuracies against α for Bicluster score.
 The simulation results for the wdbc data can be seen in
Fig. 6(a). According to the results, the Fisher score
outperforms the others. Nevertheless, our algorithm performs
better than the Variance and Laplacian scores, indicating an
improved performance of feature selection for the data without
class labels. According to the description for wdbc data, the
features are some quantities (such as area, smoothness and
dimensions) measured from breast tumor regions. Because
these measures have no significant inter-dependencies, the
Cor_Score cannot effectively influence the feature orders.
This explanation can be further proved as shown in Fig. 6(b).
It is noted that the varying values for the balancing parameter
α cannot significantly change the classification accuracies,
indicating its relatively weak effect on the feature selection.
 For the house-votes-84 data, our algorithm outperforms
the others. As illustrated in Fig. 7(a), Bicluster score achieves
comparable (even better) classification accuracies than Fisher
score, and much better results than the other two unsupervised

methods. We can conclude that there exist inter-relationships
among the features which are actually proposals in various
economic and political fields. Different proposals are likely to
have overlapped part focused by the public.

0 5 10 15 20 25 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of removed features

A
cc

u
ra

cy

Bicluster
Fisher
Variance
Laplacian

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Alpha

A
cc

u
ra

cy

(b)
Figure. 6. Feature selection performance on the wdbc data sets. (a) The
classification accuracy, and (b) accuracies against α for Bicluster score.

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of removed features

A
cc

u
ra

cy

Bicluster
Fisher
Variance
Laplacian

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.915

0.92

0.925

0.93

0.935

0.94

0.945

Alpha

A
cc

u
ra

cy

(b)
Fig.7. Feature selection performance on the house-votes-84 data sets. (a) The
classification accuracy, and (b) accuracies against α for Bicluster score.

4974

In addition, a group of congressmen from a specific party
may have positive views on a subgroup of proposals and
negative views on another subgroup. Hence, there exist many
subsets of features which internally influence each other. Our
algorithm is able to discover these feature subsets, meanwhile,
the interactions among these proposals to be voted can
accordingly help in differentiating the congressmen’s political
stands. The influence of different values of α is shown in Fig.
7(b), and provides further support to this point. It can be seen
that the total classification accuracy keeps increasing as α is
increased.

IV. DISCUSSIONS AND CONCLUSTIONS

In this paper, a novel unsupervised feature selection
algorithm is proposed. This algorithm is based on an
unsupervised biclustering algorithm which can discover local
coherent patterns in a data matrix. The discovered local
patterns including a subset of instances and a subset of
features simultaneously reveal both the separability of
instances and inter-dependencies among features. Thus, we
propose a new scoring scheme which is called Bicluster score.
Like a wrapper method, Bicluster score firstly discover
biclusters in a data matrix, then calculate two subsidiary scores
by considering the clustered instances and features for each
bicluster, and finally compute the Bicluster score by summing
the two subsidiary scores.

The experimental results using three UCI data sets
demonstrate that Bicluster score can outperform the two often
used unsupervised feature ranking algorithm and produce
comparable or even better results than Fisher score which is a
supervised method. In particular, our algorithm significantly
outperforms the other three algorithms using the wine data set,
indicating that the features (chemical components) have
relatively strong correlations. In contrast, for the wdbc data,
Fisher score demonstrates the best performance on feature
selection, showing that the features extracted from breast
tumor images are relatively independent to each other. As a
result, our algorithm is unable to improve the classification
results by considering the correlations among the features. For
the house-votes-84 data set, our algorithm generates the best
results, illustrating the features (i.e. the proposals to be voted)
are inter-related to each other and some of them have similar
influences on a subgroup of congressmen from a specific
political organization.

 In summary, the results demonstrate that Bicluster score
is able to conduct feature selection on several UCI and real
microarray data sets with good performance. By discovering
biclusters and ranking the features according to these
biclusters, it makes use of both the filter and wrapper methods’

characteristics for selecting features and can be expected to be
suitable for various data sets, especially the ones with strong
interdependencies among the features.

REFERENCES

[1] A.K. Jain, R.P.W. Duin, and J.C. Mao, “Statistical pattern recognition: A
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.1, pp. 4-37,
2000.

[2] H. Liu, and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17, pp.
491-502, 2005.

[3] H. Liu, and H. Motoda, Feature Selection for Knowledge Discovery and
Data Mining, Kluwer Academic, Boston, 2001.

[4] R. Kohavi, and G.H. John, “Wrappers for feature subset selection,” Artif.
Intell., vol. 97, no.1-2, pp. 273-324, 1997.

[5] J.G. Dy, C.E. Brodley, A. Kak, L.S. Broderick, and A.M. Aisen,
“Unsupervised feature selection applied to content-based retrieval of
lung images,” IEEE Trans. Pattern Anal. Mach. Intell., vol.25, no.3, pp.
373-378, 2003.

[6] P. Pudil, J. Novovicova, and J. Kittler, “Floating search methods in
feature selection,” Pattern Recogn. Letters, vol.15, no.11, pp. 1119-1125,
1994.

[7] Z.X. Zhu, Y.S. Ong, K.W. Wong, and K.T. Seow, “Experimental
condition selection in whole-genome functional classification,” in:
Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent
Systems, Singapore, 2004.

[8] H.C. Peng, F.H. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of Max-dependancy, Max-relevance and Min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.8,
1226-1237, 2005.

[9] Y. Cheng, and G.M. Church, “Biclustering of Expression Data,” in:
Proceedings of the Eighth International Conference on Intelligent
Systems for Molecular Biology (ISMB), 2000, pp. 93-103.

[10] S.C. Madeira, and A.L.Oliveira, “Biclustering Algorithms for Biological
Data Analysis: A Survey,” IEEE Trans. Comput. Biol. Bioinform., vol.1
no.1, pp. 24-45, 2004.

[11] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, Oxford, 1995.

[12] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in:
Advances in Neural Information Processing Systems, 17, MIT Press,
Cambridge, MA, 2005.

[13] P. Mitra, C.A. Murthy, S.K. Pal, “Unsupervised feature selection using
feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol.24, no.3,
pp. 301-312, 2002.

[14] H.L. Wei, and S.A. Billings, “Feature subset selection and ranking for
data dimensionality reduction,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.29, no.1, pp. 162-166, 2007.

[15] M. Law, M. Figueiredo, and A.K. Jain, “Simultaneous feature selection
and clustering using mixture models,” IEEE Trans. Pattern Anal. Mach.
Intell., vol.26, no.9, pp. 1154-1166, 2004.

[16] http://www.ics.uci.edu/~mlearn/MLSummary.html

[17] D.Q. Zhang, S.C. Chen, and Z.H. Zhou, “Constraint Score: A new filter
method for feature selection with pairwise constraints,” Pattern
Recognition, vol.41, pp.1440-1451, 2008.

4975

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

